
SuperLU DIST: A S
alable Distributed-Memory SparseDire
t Solver for Unsymmetri
 Linear Systems�Xiaoye S. Liy James W. DemmelzO
tober 11, 2002Abstra
tIn this paper, we present the main algorithmi
 features in the software pa
kageSuperLU DIST, a distributed-memory sparse dire
t solver for large sets of linearequations. We give in detail our parallelization strategies, with fo
us on s
alabilityissues, and demonstrate its parallel performan
e and s
alability on
urrent ma
hines.The solver is based on sparse Gaussian elimination, with an innovative stati
 pivotingstrategy proposed earlier by the authors. The main advantage of stati
 pivoting over
lassi
al partial pivoting is that it permits a priori determination of data stru
turesand
ommuni
ation patterns, whi
h lets us exploit te
hniques used in parallel sparseCholesky algorithms to better parallelize both LU de
omposition and triangular solveon large s
ale distributed ma
hines.
�This work was supported in part by the National Energy Resear
h S
ienti�
 Computing Center(NERSC) whi
h is supported by the Dire
tor, OÆ
e of Advan
ed S
ienti�
 Computing Resear
h, Divisionof Mathemati
al, Information, and Computational S
ien
es of the U.S. Department of Energy under
ontra
t number DE-AC03-76SF00098, and was supported in part by the National S
ien
e FoundationCooperative Agreement No. ACI-9619020, NSF Grant No. ACI-9813362, the Department of EnergyGrant Nos. DE-FG03-94ER25219 and DE-FC03-98ER25351, and UT Sub
ontra
t No. ORA4466 fromARPA Contra
t No. DAAL03-91-C0047.yNERSC, Lawren
e Berkeley National Lab, MS 50F, 1 Cy
lotron Rd., Berkeley, CA 94720.xiaoye�ners
.gov.zComputer S
ien
e Division, University of California, Berkeley, CA 94720. demmel�
s.berkeley.edu.1

Contents1 Introdu
tion 32 The GESP algorithm 42.1 Numeri
al stability . 72.2 Opportunities for better �ll-redu
ing orderings 113 Parallel algorithms 133.1 Matrix to pro
essor mapping and distributed data stru
ture 133.2 Numeri
al kernel based on Level 3 BLAS 153.3 Parallel fa
torization with pipelining . 153.4 Parallel triangular solution . 214 Parallel performan
e and s
alability 214.1 Fa
torization . 224.2 Triangular solution . 234.3 Memory usage . 244.4 S
alability . 244.5 Load balan
e and
ommuni
ation/syn
hronization overhead 264.6 Large appli
ations . 275 Related work 276 Con
luding remarks and future work 28A Exploiting higher pre
ision to enhan
e stability 33

2

1 Introdu
tionParallelizing sparse dire
t solvers has been an a
tive resear
h area in the past de
ade.Our goal is to implement a sparse dire
t solver for nonsymmetri
 matri
es as s
alably aspossible on distributed memory ma
hines.It is important to say what we do not mean by s
alability, be
ause it is not possibleto a
hieve s
alability for some reasonable senses of the word. For instan
e, if the n-by-nmatrix equation to be solved arises from a di�erential equation like Lapla
e's equation,then we
annot aspire to a
hieve the O(n)
omplexity of methods like multigrid. Nordo we
laim linear speedups for �xed problem size, sin
e this depends so mu
h on theparti
ular sparse matrix stru
ture. Nor do we
laim linear speedups for for
onstant-work-per-pro
essor s
aling on reasonable model problems, although we do
ome
lose (seese
tion 4.4).What we do mean by s
alability is \as s
alable as solving a symmetri
 positive de�nite(spd) linear system by a sparse dire
t method," or more brie
y \as s
alable as sparseCholesky." The reason for this is that the nonsymmetri
 problem is stri
tly more diÆ
ultthan the spd
ase, so that we
annot hope to do better in general. Our
laim of s
alabilityis based on our ability to use all the te
hniques exploited to parallelize sparse Cholesky(see below). The pri
e we pay is a very small probability of numeri
al instability. Wenote that this numeri
al instability never o

urred on our extensive test set for the defaultparameter settings of our
ode, and in any event is always dete
ted and reported by the
ode.The advantage of sparse Cholesky over the nonsymmetri

ase is that pivots
anbe
hosen in any order from the main diagonal while guaranteeing stability. This letsus perform pivot
hoi
e before numeri
al fa
torization begins, in order to minimize �ll-in, maximize parallelism, pre
ompute the nonzero stru
ture of the Cholesky fa
tor, andoptimize the (2D) distributed data stru
tures and
ommuni
ation pattern. Resear
hershave been quite su

essful in a
hieving \s
alable" performan
e for sparse Choleskyfa
torization; available
odes in
lude CAPSS [38℄, MUMPS-SYM [3℄, PaStix [40℄,PSLDLT [54℄, and PSPACES [36℄.In
ontrast, for nonsymmetri
 or inde�nite systems, few distributed-memory
odesexist. They are more
ompli
ated than Choleksy for at least two reasons. First andforemost, some kind of numeri
al pivoting is ne
essary for stability. Classi
al partialpivoting [33℄ or the sparse variant of threshold pivoting [23℄ typi
ally
ause the �ll-ins andworkload to be generated dynami
ally during fa
torization. Therefore, we must eitherdesign dynami
 data stru
tures and algorithms to a

ommodate these �ll-ins [3℄, or elseuse stati
 data stru
tures whi
h
an grossly overestimate the true �ll-in [26, 35℄. These
ond
ompli
ation is the need to handle two fa
tored matri
es L and U , whi
h arestru
turally di�erent yet
losely related to ea
h other in the �lled pattern. Unlike theCholesky fa
tor whose minimum graph representation is a tree (
alled the eliminationtree, or etree for short) [48℄, the minimum graph representations of the L and U fa
torsare dire
ted a
y
li
 graphs (
alled elimination DAGs, or edags for short) [31, 32℄.Despite these diÆ
ulties, resear
hers have been addressing these issues su

essfullyfor sequential and shared memory ma
hines; available
odes in
lude MA41 [6, 5℄,PARDISO [57℄, SPOOLES [9℄, SuperLU [19℄, SuperLU MT [20℄, UMFPACK/MA38 [15℄,and WSMP [34℄. 3

In our earlier
odes SuperLU (serial) and SuperLU MT (shared-memory), we devisedeÆ
ient \symboli
" fa
torization algorithms to a

ommodate the dynami
ally generated�ll-ins due to partial pivoting. The symboli
 algorithm
ould not be de-
oupled from thenumeri
al fa
torization; instead, it was interleaved with the numeri
al algorithm as thenumeri
al fa
torization pro
eeds. These symboli
 fa
torization algorithms are not suitablefor distributed-memory ma
hines, be
ause they involve �ne-grained memory a

ess andsyn
hronization to manage the data stru
tures and identify task and data dependen
ies.This would generate large numbers of small messages.Therefore, for SuperLU DIST whi
h is targeted for large-s
ale distributed-memoryma
hines, we use a stati
 pivoting approa
h,
alled GESP (Gaussian Elimination withStati
 Pivoting), proposed earlier by the authors [46℄. We parallelized the GESP algorithmusing MPI. Our parallelization strategies
enter around the s
alability
on
ern. We usea 2D blo
k-
y
li
 mapping of a sparse matrix to the pro
essors, and designed an eÆ
ientpipelined algorithm to perform parallel fa
torization. With GESP, the parallel algorithmand
ode are mu
h simpler than if we had to pivot dynami
ally. The main algorithmi
features of SuperLU DIST solver are summarized as follows:� supernodal fan-out (right-looking) based on elimination DAGs,� stati
 pivoting with possible half-pre
ision perturbations on the diagonal,� use of an iterative algorithm using the LU fa
tors as a pre
onditioner, in order toguarantee stability,� stati
 2D irregular blo
k-
y
li
 mapping using supernodal stru
ture, and� loosely syn
hronous s
heduling with pipelining.In parti
ular, stati
 pivoting
an be performed before numeri
al fa
torization, allowing usto use all the te
hniques in good parallel sparse Cholesky
odes:
hoi
e of a (symmetri
)permutation to minimize �ll-in and maximize parallelism, pre
omputation of the �llpattern and optimization of 2D distributed data stru
tures and
ommuni
ation patterns.The rest of the paper is organized as follows. In Se
tion 2 we demonstrate thenumeri
al stability, the sequential runtime eÆ
ien
y and the ordering s
hemes of theGESP algorithm. In Se
tion 3, we present an MPI implementation of the distributedalgorithms for LU fa
torization and triangular solutions. In Se
tion 4, we present andanalyze the parallel performan
e and s
alability results. Se
tion 5 des
ribes the relatedwork and
ompares SuperLU DIST with some other solvers. The last se
tion presents futurework. Finally, an appendix gives a theoreti
al algorithm that shows how all pivoting
antheoreti
ally be avoided at the
ost of using dynami
 pre
ision to guarantee stability.2 The GESP algorithmRe
all that the role of numeri
al pivoting is to avoid small pivots and
ontrol pivotgrowth in the fa
tors. Dynami
 pivoting is not the only means to a
hieve this goal.We
an use other algorithms to pre-permute large elements on the diagonal, therebypartially ful�ling the role of dynami
 pivoting. Furthermore, when large pivot growth stillo

urs, there are inexpensive methods to tolerate and
ompensate for the growth, su
h as4

iterative methods pre
onditioned by the
omputed LU fa
tors, of whi
h GMRES [55℄ anditerative re�nement are two examples. This observation led us to design a stati
 pivotingfa
torization algorithm,
alled GESP [46℄. We demonstrated that GESP works well forpra
ti
al matri
es.In our GESP algorithm, sin
e pivots are
hosen from the main diagonal, the �ll-in positions
an be determined before the numeri
al fa
torization, and so the symboli
fa
torization
an be de-
oupled from numeri
al fa
torization. This enables stati
 datastru
ture optimization, graph manipulation and load balan
ing in a similar way as parallelsparse Cholesky implementations.Figure 1 sket
hes our GESP algorithm. To motivate step (1), re
all that a diagonallydominant matrix is one where ea
h diagonal entry aii is larger in magnitude than the sumof magnitudes of the o�-diagonal entries in its row (Pj 6=i jaij j) or
olumn (Pj 6=i jajij). Itis known that
hoosing diagonal pivots ensures stability for su
h matri
es [18, 33℄. Wetherefore expe
t that if ea
h diagonal entry
an somehow be made larger relative to theo�-diagonals in its row or
olumn, then diagonal pivoting will be more stable. The purposeof step (1) is to
hoose the diagonal s
aling matri
es Dr and D
, and the permutation Prto make ea
h aii larger in this sense. We have experimented with a number of heuristi
algorithms implemented in the routine MC64 (available from HSL [41℄) [22℄. All dependon the following graph representation of an n � n sparse matrix A: it is represented asan undire
ted weighted bipartite graph with one vertex for ea
h row, one vertex for ea
h
olumn, and an edge with appropriate weight
onne
ting row vertex i to
olumn vertexj for ea
h nonzero entry aij . Finding a permutation Pr that puts large entries on thediagonal
an thus be transformed into a weighted bipartite mat
hing problem on thisgraph. In MC64, there are algorithms that
hoose Pr to maximize di�erent properties ofthe diagonal of PrA, su
h as the smallest magnitude of any diagonal entry, or the sumor produ
t of magnitudes. But the best algorithm in pra
ti
e is the following (option 5of MC64): it
hooses Pr to maximize the produ
t of the diagonal entries, and
hooses Drand D
 simultaneously so that ea
h diagonal entry of PrDrAD
 is �1, ea
h o�-diagonalentry is bounded by 1 in magnitude. The implementation is based on the algorithm byOlshowka and Neumaier [50℄. We report results for this algorithm only. The worst
aseserial
omplexity of this algorithm is O(n �nnz(A) � logn), where nnz(A) is the number ofnonzeros in A. In pra
ti
e it is mu
h faster; the a
tual timings appear later in Figure 7. InSe
tion 5, we des
ribe the work of others who experimented this idea in the sparse dire
tand iterative solvers.We note that the diagonal s
alings Dr and D
 are needed in the algorithm so that(1) the value of kAk1 in step (4) makes sense (see below) and (2) the estimated
onditionnumber from step (7) is not overly pessimisti
 when the rows and
olumns are badlys
aled (i.e. Dr and D
 are far from multiplies of the identity). Indeed, in the absen
e ofover/under
ow, as long as the diagonal entries of Dr and D
 are
hosen to be multiples ofthe radix (typi
ally 2), and no small pivots are en
ountered in step (4) (see below), thenidenti
al rounding errors will be made in parts (4) through (6) of the algorithm whetheror not Dr and D
 are applied to A in step (1).Step (2) is standard in sparse dire
t solvers. The
olumn permutation P

an beobtained from any �ll-redu
ing heuristi
. In our
ode, we provide the minimum degreeordering algorithm [47℄ on the stru
ture of AT + A. The
ode
an also take as input anordering based on some other algorithm, su
h as the nested disse
tion on AT +A [27, 39,5

Figure 1: The outline of the GESP algorithm.(1) Perform row/
olumn equilibration and row permutation: A Pr �Dr �A �D
,where Dr and D
 are diagonal matri
es and Pr is a row permutation
hosento make the diagonal large
ompared to the o�-diagonal.(2) Find a
olumn permutation P
 to preserve sparsity: A P
 �A � PT
(3) Perform symboli
 analysis to determine the nonzero stru
tures of L and U .(4) Fa
torize A = L �U with
ontrol of diagonal magnitude:if (jaiij < p" � kAk1) thenset aii to p" � kAk1endif(5) Perform triangular solutions using L and U .(6) If needed, use an iterative solver like GMRES or iterative re�nement (shown below)iterate:r = b� A � x : : : sparse matrix-ve
tor multiplySolve A � dx = r : : : triangular solutionberr = maxi jrji(jAj�jxj+jbj)i : : :
omponentwise ba
kward errorif (berr > " and berr � 12 � lastberr) thenx = x+ dxlastberr = berrgoto iterateendif(7) If desired, estimate the
ondition number of A
6

43℄. Note that we also apply P
 to the rows of A to ensure that the large diagonal entriesobtained from step (1) remain on the diagonal.In step (4), we perform fa
torization using diagonal pivots. The tiny pivots en
ounteredduring elimination
an be set to p" �kAk1, where " is ma
hine pre
ision. This is equivalentto a small (half pre
ision) perturbation to the original problem, and trades o� somenumeri
al stability for the ability to keep pivots from getting too small.In step (6), we perform a few steps of an iterative method like iterative re�nement(shown) or GMRES [55℄ if the solution from step (5) is not a

urate enough. Thetermination
riterion is based on the
omponentwise ba
kward error berr [8, 18℄. The
ondition berr � " means that the
omputed solution is the exa
t solution of a slightlydi�erent sparse linear system (A + ÆA)x = b + Æb where ÆA
hanges only ea
h nonzeroentry aij by at most one unit in its last pla
e, and the zero entries are left un
hanged;thus one
an say that the answer is as a

urate as the data deserves. We terminate theiteration when the ba
kward error berr is smaller than ma
hine epsilon, or when it doesnot de
rease by at least a fa
tor of two
ompared with the previous iteration. The lattertest is to avoid possible stagnation. (Figure 5 shows that berr is always small.) Note thatdemanding berr � " is very stringent, and in pra
ti
e, the re�nement
an be terminatedearlier.When a small diagonal is en
ountered and set to p" � kAk1, this may
ause a largeba
kward error in A, but this error is only large in norm, not in rank. In other words, thedi�eren
e between A and the produ
t of the
omputed fa
tors L �U is small in rank. Thismakes the LU fa
torization an ex
ellent pre
onditioner of A for a method like GMRES,whi
h (in the absen
e of roundo�) takes no more steps to
onverge than the di�eren
e inrank between L �U and A. This will be borne out in the experiments below.2.1 Numeri
al stabilityIn this subse
tion, we illustrate the numeri
al stability and runtime of our GESP algorithmon 68 unsymmetri
 matri
es drawn from a wide variety of appli
ations. The appli
ationdomains of the matri
es are given in Table 1. Most of them, ex
ept for wu,
an be obtainedfrom the Harwell-Boeing Colle
tion [24℄ and the
olle
tion of Davis [16℄. Matrix wu wasprovided by Yushu Wu from the Earth S
ien
es Division of Lawren
e Berkeley NationalLaboratory. Figure 2 plots the dimension, nnz(A), and nnz(L+U) (i.e., the �ll-ins, afterthe minimum degree ordering on AT + A). The matri
es are sorted in in
reasing orderof the LU fa
torization time of the sequential GESP algorithm. The matri
es of mostinterest for parallelization are the ones that take the most time, i.e., the ones towards theright of this graph. It is
lear that the matri
es with larger numbers of nonzeros requiremore time to fa
torize. The timing results reported in this subse
tion are obtained on asingle IBM 375 MHz POWER3 pro
essor, running AIX operating system. The pro
essorhas a 64 KB L1 data
a
he and an 8 MB L2
a
he.Detailed performan
e results from this se
tion in tabular format are available athttp://www.ners
.gov/�xiaoye/SuperLU/GESP.As shown in Figure 1, our algorithm
an be used in many \
on�gurations":� We may or may not perform step (1). 7

Dis
ipline Matri
es
uid
ow, CFD af23560, bbmat, bramley1, bramley2, ex11, ex19, �dap011, �dap019,�dapm11, �dapm29, garon2, goodwin, graham1, ina

ura, inv-extrusion-1,lnsp3937, lns 3937, mixing-tank, raefsky3, raefsky4, rma10, venkat01, wu
ir
uit simulation add32, gre 1107, gre 115, jpwh 991, memplus, onetone1, onetone2, twotonedevi
e simulation e
l32, wang3, wang4
hemi
al engineering extr1, hydr1, lhr01, lhr71
, radfr1, rdist1, rdist2, rdist3a, west2021
hemi
al pro
ess bayer01, bayer02, bayer04petroleum engineering orsreg 1, saylr4, sherman3, sherman4, sherman5�nite element PDE av4408, av11924MagnetoHydroDynami
s mhd500sti� ODE fs 541 2Olmstead
ow model olm5000aeroelasti
ity tols4000reservoir modelling pores 2
rystal growth simulation
ry10000power
ow modelling gemat11diele
tri
 waveguide dw8192 (eigenproblem)astrophysi
s m
feplasma physi
s utm5940demography psmigr 1, psmigr 2, psmigr 3e
onomi
s mahindas, orani678Table 1: Test matri
es and their dis
iplines.� One of many ordering s
hemes (nested disse
tion, minimum degree et
.) may beused in step (2).� We may or may not repla
e tiny pivots with p" � kAk1 in step (4).� We may apply several kinds of iteration (or none at all) in step (6).In this se
tion we report on several
on�gurations of the algorithm. First, �gures 3through 7 show data for the algorithm as shown in Figure 1, in
luding iterative re�nementin step (6), whi
h is often the fastest
on�guration. However, for a few matri
es (seebelow) to get a stable solution it was important not to repla
e tiny pivots in step (4)(for other matri
es it was important to repla
e tiny pivots as in step (4), and for mostmatri
es it did not matter). So the data in �gures 3 through 7 a
tually re
e
ts two possible
on�gurations, depending on the matrix (repla
ing tiny pivots in step (4) or not).Se
ond, we ran all the matri
es with the same
on�guration of the algorithm, inwhi
h restarted GMRES was used in step (6). All matri
es were solved stably in this
on�guration, though it was sometimes slower than iterative re�nement.For the data reported in this se
tion, we use minimum degree ordering on the stru
tureof AT +A.Now we
onsider the �rst
on�guration, when iterative re�nement was used. Amongthe 68 matri
es, many would get wrong answers or fail
ompletely (via division by a zeropivot) without any pivoting or other pre
autions. In twenty six of these matri
es, someof the zeros present in the initial diagonal
ontinue to remain zero during elimination,and in another group of two matri
es (bbmat and orsreg 1), new zeros are
reated on thediagonal during elimination. Therefore, not pivoting at all would fail
ompletely on these29 matri
es. For our experiment, the right-hand side ve
tor is generated so that the true8

solution xtrue is a ve
tor of all ones. IEEE double pre
ision is used as the working pre
ision,with " � 10�16. All the test matri
es have
ondition numbers bounded by 1" . Figure 3shows the number of iterations taken in the iterative re�nement step. The termination
riteria is that the ba
kward error berr = maxi jrji(jAj�jxj+jbj)i � " or berr does not de
reaseby one-half of the previous step. For most matri
es, the iteration terminates with no morethan 3 steps: 9 matri
es require 1 step, 46 matri
es require 2 steps, 5 matri
es require3 steps, and 8 matri
es require more than 3 steps. In the
ase of
onventional Gaussianelimination with partial pivoting (GEPP) (as in sequential SuperLU), 4 matri
es require 1step, 63 matri
es require 2 steps, and 1 matrix requires 3 steps.For ea
h matrix, we present two error metri
s, in Figure 4 and Figure 5 respe
tively, toassess the a

ura
y and stability of GESP. Figure 4 plots the error from GESP versus theerror from GEPP for ea
h matrix: a dot on the diagonal means the two errors were thesame, a dot below the diagonal means GESP is more a

urate, and above means GEPPis more a

urate. Figure 4 shows that the error of GESP is at most a little larger, and
an be smaller (36 out of 68 matri
es), than the error from GEPP. Figure 5 shows thatthe
omponentwise ba
kward error [18℄ is also small, usually near " and never larger than10�13.Figure 6
ompares the pivot growth of GESP versus that of GEPP. Here, the pivotgrowth is de�ned as jjU jj1jjAjj1 . For 31 matri
es, GESP and GEPP have
omparable pivotgrowth. For 10 matri
es, GESP has more than 10 orders of magnitude larger pivot growththan GEPP, up to 1024. Even in the presen
e of su
h large pivot growth, the iterativere�nement
an e�e
tively re
over any loss of a

ura
y during the fa
torization.Note that Figure 1 shows all the te
hniques that are implemented in the
ode. Somemay not be needed for some problems. Our experiment shows that the half-pre
isionperturbation introdu
ed in step (4) is not needed for most matri
es. It is ne
essary for�ve matri
es (�dapm11, goodwin, graham1, inv-extrusion-1 and mixing-tank), but is badfor four others (ex11, �dap011, ina

ura and raefsky4). The rest of the matri
es areinsensitive to this option, be
ause either no tiny pivots o

ur or it does not matter whatyou do. Therefore, in our
ode, we provide a
exible interfa
e so the user is able to turnon or o� any of these options (steps (1), (2), (6), and the diagonal perturbation in step(4)).Now we turn to the se
ond
on�guration of our algorithm, in whi
h restartedGMRES [55℄ was used in step (6) (we used the version from SPARSKIT [56℄). Therestart value is 50. Here, our LU fa
torization is used in pre
onditioning for GMRES.The
onvergen
e test is based on residual norm: jjrijj2 � rtol � jjr0jj2 + atol, where therelative toleran
e rtol and absolute toleran
e atol are 10�6 and 10�10. For the four \bad"matri
es above (ex11, �dap011, ina

ura and raefsky4), GMRES takes 497, 530, 5, and41 iterations to
onverge. The number of tiny pivots repla
ed in step (4) for these 4matri
es was 8666, 8602, 3, and 51, respe
tively. For most of the other matri
es, GMRESterminates within two iterations. This shows that with one parameter setting, we
ansolve all the test problems a

urately. In the software, we plan to provide an interfa
e tothe user with the options of using various iterative s
hemes.We now evaluate the runtime of ea
h step of GESP in Figure 1, in our �rst
on�gurationwith iterative re�nement in step (6). This is done with respe
t to the sequential runtime.For large enough matri
es, the LU fa
torization in step (4) dominates all the other steps,so we will measure the time of ea
h step with respe
t to step (4).9

Figure 2: Chara
teristi
s of the matri
es.
10

−2
10

0
10

2
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

LU factorization time in seconds

of nonzeros in A
of nonzeros in L+U

Figure 3: Iterative re�nement steps.
10

0
10

5
10

10
10

15
1

2

3

4

5

6

7

8

Condition number

N
u

m
b

e
r

o
f
ite

ra
tiv

e
 r

e
fin

e
m

e
n

t
st

e
p

s GESP
GEPP

Figure 4: The error jjxtrue�xjj1jjxjj1 .
10

−15
10

−10
10

−5
10

0

10
−15

10
−10

10
−5

10
0

Error from GEPP

E
rr

o
r

fr
o

m
 G

E
S

P

Figure 5: The ba
kward errormaxi jA�x�bji(jAj�jxj+jbj)i .
10

0
10

5
10

10
10

15
10

−17

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

Condition number

B
a

ck
w

a
rd

 e
rr

o
r

GESP
GEPP

10

Figure 6: The ratio of pivot growth of GESPversus GEPP.
10

0
10

5
10

10
10

15
10

−5

10
0

10
5

10
10

10
15

10
20

10
25

Condition number

P
iv

o
t
G

ro
w

th
 :
 G

E
S

P
 v

s
G

E
P

P

Figure 7: The times for the other steps of GESP,as fra
tion of the fa
torization time.
10

−2
10

−1
10

0
10

1
10

2
10

3

10
−2

10
−1

10
0

10
1

LU factorization time in seconds
F

ra
ct

io
n

 o
f
L

U
 f
a

ct
o

ri
za

tio
n

 t
im

e

MC64
MMD(A’+A)
Symbolic
Tri. soln.
Iter. refine.Both row and
olumn permutation algorithms in steps (1) and (2) (
omputing Pr andP
) are not easy to parallelize (their parallelization is future work). Fortunately, theirmemory requirement is just O(nnz(A)) [17, 21℄, as opposed to the superlinear memoryrequirement for L and U fa
tors, so in the meantime we
an run the ordering algorithmson a single pro
essor.Figure 7 shows the times spent in the other steps of GESP as the fra
tion of thesequential time for the fa
torization step. The times are signi�
ant for the small problems,but drops to smaller fra
tion as the problems be
ome larger. Only the large matri
es areof interest for parallel ma
hines and are also the ones whi
h SuperLU DIST is designed for.In an appendix, we present a theoreti
al algorithm that provides a guarantee of stabilitywhile using stati
 pivoting, but variable pre
ision. The purpose of this appendix is toshow that dynami
 pivoting may indeed be avoided without sa
ri�
ing stability. We notethat even
onventional partial pivoting does not absolutely guarantee stability, be
auseexponential pivot growth is still possible, while very unlikely. It is a risk most users
anlive with, as we suggest is also the
ase for stati
 pivoting.2.2 Opportunities for better �ll-redu
ing orderingsFor the unsymmetri
 fa
torizations, the preordering for sparsity is less well understoodthan that for the Cholesky fa
torization. Most unsymmetri
 ordering methods use thesymmetri
 ordering te
hniques on a symmetrized matrix (e.g., ATA). Now we examinethe stru
tural relationships of several matri
es, and des
ribe the rationale behind theabove ordering methods. Consider the LU fa
torization with partial pivoting PrA = LU ,where Pr is a permutation matrix des
ribing row inter
hanges. Also
onsider the Choleskyfa
torization ATA = RTR, and the QR fa
torization A = QR
omputed by Householdertransformation.1 Q is represented by the \Householder matrix" H whose
olumns are the1The R fa
tor in the Cholesky fa
torization and the R fa
tor in the QR fa
torization are identi
al.11

Householder ve
tors. The nonzero stru
ture for L and U
annot be predi
ted immediatelyfrom the nonzero stru
ture of A, be
ause the row inter
hanges during the fa
torizationdepend on the numeri
al values. However, for any row inter
hanges, the stru
tures of Land U are subsets of the stru
tures of H (or RT) and R respe
tively [28, 30℄. Therefore, agood symmetri
 ordering P
 onATA (either based on minimum degree or nested disse
tion)that preserves the sparsity of R
an be applied to the
olumns of A, forming APT
 , so thatthe LU fa
torization of the
olumn-permuted matrix APT
 is sparser than that of theoriginal matrix A. This is due to the relation P
(ATA)PT
 = (APT
)T (APT
). A drawba
kwith the above approa
h is that
omputing the stru
ture of ATA
an be expensive bothin time and spa
e sin
e ATA may be mu
h denser than A. Davis et al. developed analgorithm,
alled COLAMD, to
ompute P
 dire
tly from the sparsity stru
ture of A [17℄.It is based on the same strategy, that is, to make the \upper bound" matri
es H and Rsparser, but uses better heuristi
s. Both serial SuperLU and SuperLU MT have in
orporatedboth
olumn ordering methods; i.e., the user
an
hoose to obtain a
olumn ordering by
alling MMD [47℄ on ATA, or by
alling COLAMD.Sin
e the \ATA{based ordering" methods attempt to a

ount for all possible rowinter
hanges, it may be too generous when only a limited amount of pivoting is needed.This is espe
ially true for our GESP algorithm, in whi
h the row inter
hanges areperformed prior to the fa
torization. During the fa
torization, the pivots are
hosen solelyon the main diagonal. A better �ll-redu
ing ordering would be based on the symmetri
matrix AT +A, instead of ATA, be
ause the symboli
 Cholesky fa
tor of AT +A is a mu
htighter upper bound on the stru
tures of L and U than that of ATA. Note that in this
ase, we perform a symmetri
 permutation PAPT so that the entries of the main diagonalof the permuted matrix remain the same as those in the original matrix A. Table 2 liststhe amount of �ll in the LU fa
torization using di�erent ordering methods. It is
lear thatthe ordering based on AT + A is mu
h better than those based on ATA. Sometimes theimprovement
an be more than a fa
tor of two, see matri
es inv-extrusion-1, mixing-tankand wang4. The only ex
eption is fidapm11, for whi
h the three ordering methods are
omparable. Nonzeros in L + U (106)(ATA){based (AT + A){basedMatrix MMD COLAMD MMD AMDbbmat 49.1 49.8 41.1 40.2e
l32 73.5 72.6 42.4 42.7fidapm11 26.4 24.3 24.8 24.8inv-extrusion-1 53.7 62.7 29.1 28.4mixing-tank 86.9 81.4 40.7 41.2rma10 14.7 16.3 9.3 9.3twotone 22.6 18.3 11.4 11.9wang4 27.7 25.5 10.5 10.7Table 2: Impa
t of di�erent ordering methods on the size of the fa
tors; the GESPalgorithm is used.Although the (AT + A){based orderings improve the ordering quality, it still may notbe the most e�e
tive �ll-redu
ing method, sin
e symmetrization AT +A may destroy the12

sparsity of matrix A, parti
ularly when A is highly unsymmetri
. Re
ently, motivatedby the GESP algorithm and an unsymmetrized multifrontal method [5℄, Amestoy, Liand Ng [4℄ proposed a new symmetri
 ordering s
heme that does not require anysymmetrization of the underlying matrix, that is, it works dire
tly on matrix A itself. Thes
heme is similar to the Markowitz s
heme [49℄ but limits the pivot sear
h to the entrieson the main diagonal. The eÆ
ient implementation is similar to that of approximateminimum degree (AMD) [2℄, but it generalizes the (symmetri
) quotient graph to thebipartite quotient graph to model the unsymmetri
 node elimination. The preliminaryresults show that the new ordering method redu
es the amount of �ll by 10% on averagefor very unsymmetri
 matri
es, when
ompared with applying AMD to AT + A. In thefuture, we will in
orporate this new ordering algorithm into SuperLU DIST.The better
hoi
e of sparsity ordering algorithm is indeed an an added bene�t of theGESP algorithm over GEPP. Throughout the paper, we only report the results using theordering algorithms based on AT + A.3 Parallel algorithmsIn this se
tion, we des
ribe our design, implementation and the performan
e of thedistributed algorithms for two major steps of the GESP method: sparse LU fa
torization(step (4)) and sparse triangular solve (step (5)). Our implementation uses MPI [58℄ to
ommuni
ate data. We have tested the
ode on a number of platforms, su
h as Cray T3E,IBM SP, and Berkeley NOW.3.1 Matrix to pro
essor mapping and distributed data stru
tureWe distribute the matrix in a two-dimensional blo
k-
y
li
 fashion. In this distribution,the P pro
esses are arranged as a 2D pro
ess grid of shape nprow � np
ol. The matrixis partitioned into blo
ks of submatri
es. The blo
k de�nition is based on the notion ofunsymmetri
 supernode �rst introdu
ed in [19℄; it is de�ned over the matrix fa
tor L. Asupernode is a range (r : s) of
olumns of L with the triangular blo
k just below thediagonal being full, and the same nonzero stru
ture elsewhere (either full or zero). Thissupernode partition is used as the blo
k partition in both row and
olumn dimensions,that is the diagonal blo
ks are square. If there are N supernodes in an n-by-n matrix,the matrix will be partitioned into N2 blo
ks of non-uniform size. The size of ea
h blo
kis matrix dependent. The o�-diagonal blo
ks may be re
tangular and need not be full.Furthermore, the
olumns in a blo
k of U do not ne
essarily have the same row stru
ture.We
all a dense sub-
olumn in a blo
k of U a segment. By blo
k-
y
li
 layout, we meanblo
k (I; J) is mapped onto the pro
ess at
oordinate ((I � 1) mod nprow, (J � 1) modnp
ol) of the pro
ess grid. During fa
torization, blo
k L(I; J) is only needed by thepro
esses on the pro
ess row ((I � 1) mod nprow), thus restri
ting the
ommuni
ation.Similarly, blo
k U(I; J) is only needed by the pro
esses on the pro
ess
olumn ((J � 1)mod np
ol). Figure 8 illustrates su
h a 2D blo
k-
y
li
 layout.Although a 1D partition is more natural to sparse matri
es and is mu
h easier toimplement, a 2D layout strikes a good balan
e among lo
ality (by blo
king), load balan
e(by
y
li
 mapping), and lower
ommuni
ation volume (by 2D mapping). 2D layouts13

Figure 8: The 2D blo
k-
y
li
 layout and the data stru
ture to store a lo
al blo
k
olumnof L.
0 1

43

2

...

1 2

...

4

0

2

3

021020

34343

4

1 020210

33

0210

4

0

33 43

0

1

2 0

1

1

Process Mesh

Global Matrix

L

5

5

5 5

U
5

5

5

index

Storage of block column of L

of blocks

nzval

block #

row subscripts

i1
i2

of full rows

block #

row subscripts

i1
i2

of full rows

LDA of nzval

were demonstrated to be more s
alable in the implementations for dense matri
es [13℄ andsparse Cholesky fa
torization [37, 54℄.We now des
ribe the distributed data stru
tures to store lo
al submatri
es. In the 2Dblo
king, ea
h blo
k
olumn of L resides on more than one pro
ess, namely, a
olumn ofpro
esses. For example, in Figure 8, the se
ond blo
k
olumn of L resides on the
olumnpro
esses f1, 4g. Pro
ess 1 only owns two nonzero blo
ks, whi
h are not
ontiguous inthe global matrix. The s
hema on the right of Figure 8 depi
ts the data stru
ture to storethe nonzero blo
ks on a pro
ess. Besides the numeri
al values stored in a Fortran-stylearray nzval[℄ in
olumn-major order, we need the information to interpret the lo
ationand row subs
ript of ea
h nonzero. This is stored in an integer array index[℄, whi
hin
ludes the indi
es for the whole blo
k
olumn and for ea
h individual blo
k in it. Thezero blo
ks are not stored; neither do we store the zeros in a nonzero blo
k. Both lowerand upper triangles of the diagonal blo
k are stored in the L data stru
ture. A pro
essowns dN=np
ole blo
k
olumns of L, so it needs dN=np
ole pairs of index/nzval arrays.For matrix U , we use a row oriented storage for the blo
k rows owned by a pro
ess,although for the numeri
al values within ea
h blo
k we still use
olumn-major order.Similarly to L, we also use a pair of index/nzval arrays to store a blo
k row of U . Dueto asymmetry, ea
h nonzero blo
k in U has the skyline stru
ture as shown in Figure 8(see [19℄ for details on the skyline stru
ture). Therefore, the organization of the index[℄array is di�erent from that for L, whi
h we omit showing in the �gure.The user
an
ontrol the partitioning and mapping. Firstly, the user
an setthe maximum blo
k size parameter. The symboli
 fa
torization algorithm identi�essupernodes, and
hops the large supernodes into smaller ones if their sizes ex
eed thisparameter. The supernodes may be smaller than this parameter due to sparsity and theblo
ks are then de�ned by the supernode boundaries. (That is, supernodes
an be smallerthan the maximum blo
k size but never larger.) Our experien
e has shown that a goodvalue for this parameter on the IBM SP2 is around 40, while on the Cray T3E it is around24, be
ause T3E has smaller
a
hes on ea
h pro
essor. Se
ondly, the user
an set the14

shape of the pro
ess grid, su
h as 2� 3 or 3� 2. Better performan
e is obtained when wekeep the pro
ess row dimension slightly smaller than the pro
ess
olumn dimension. Sin
ewe do no dynami
 pivoting, blo
k partitioning and the setup of the data stru
ture
anall be performed in the symboli
 algorithm. This is mu
h
heaper to exe
ute as opposedto partial pivoting where the size of the data stru
ture
annot be fore
ast and must bedetermined on the
y as fa
torization pro
eeds.3.2 Numeri
al kernel based on Level 3 BLASThe main numeri
al kernel during the fa
torization is a blo
k update
orresponding to therank-k update to the S
hur
omplement:A(I; J) A(I; J)� L(I;K)� U(K; J) ;see Figure 9. In earlier versions of SuperLU, this
omputation was based on Level 2.5BLAS. That is, we
all the Level 2 BLAS routine GEMV (matrix-ve
tor produ
t) butwith multiple ve
tors (segments), and the matrix L(I;K) is kept in
a
he a
ross thesemultiple
alls. This to some extent mimi
s the Level 3 BLAS GEMM (matrix-matrixprodu
t) performan
e. However, the di�eren
e between Level 2.5 and Level 3 is still quitelarge on many ma
hines, for example the IBM SP2. This motivated us to modify the kernelin the following way in order to use Level 3 BLAS. For best performan
e, we distinguishtwo
ases
orresponding to the two shapes of a U(K; J) blo
k.� The segments in U(K; J) are of same height, as shown in Figure 9 (a).Sin
e the nonzero segments are stored
ontiguously in memory, we
an
all GEMMdire
tly, without performing operations on any zeros.� The segments in U(K; J) are of di�erent heights, as shown in Figure 9 (b).In this
ase, we �rst
opy the segments into a temporary working array T , withsome leading zeros padded if ne
essary. We then
all GEMM using L(I;K) andT (instead of U(K; J)). We perform some extra
oating-point operations for thosepadding zeros. The
opying itself does not in
ur a runtime
ost, be
ause the datamust be loaded in the
a
he anyway. The working storage T is bounded by themaximum blo
k size, whi
h is a tunable parameter. For example, we usually use40� 40 on the IBM SP2 and 24� 24 on the Cray T3E.Compared with the Level BLAS 2.5 kernel, this Level 3 BLAS kernel improved theunipro
essor fa
torization time by about 20% to 40% on the IBM SP2. A performan
egain was also observed on the Cray T3E. It is
lear that the extra operations are wello�set by the bene�t of the more eÆ
ient Level 3 BLAS routines.3.3 Parallel fa
torization with pipeliningIn this subse
tion, we �rst des
ribe in detail how the parallel fa
torization algorithmutilizes the pipeline e�e
t. Then we dis
uss how to improve the performan
e robustnessby introdu
ing immediate sends and re
eives. The following notation will be used inFigure 11 and throughout the dis
ussion. Matlab notation is used for integer ranges andsubmatri
es. 15

Figure 9: Illustration of the numeri
al kernels used in SuperLU DIST.
(b) U(K, J) =

COPY

A(I, J) L(I, K) U(K, J)

− x

(a) U(K, J) =

= T� Pro
ess IDs{ PROC
(K) : the set of
olumn pro
esses that own blo
k
olumn KFor example, in Figure 8, PROC
(3) = PROC
(6) = f2; 5g.{ PROCr(K) : the set of row pro
esses that own blo
k row KFor example, in Figure 8, PROCr(1) = PROCr(3) = f0; 1; 2g.{ PK = PROC
(K) \ PROCr(K){ me : the pro
ess rank as illustrated in Figure 8� Tasks labelled in Figure 11{ F (: : :) : Fa
torize a blo
k
olumn or a blo
k row2{ S (: : :) : Send a blo
k
olumn or a blo
k row{ R (: : :) : Re
eive a blo
k
olumn or a blo
k row{ U(k)(: : :) : Update the trailing submatrix using L(:; K) and U(K; :)The parallel sparse LU fa
torization algorithm is right-looking and loosely syn
hronous,as shown in Figure 10. It loops over the number of supernodes. The K-th iteration ofthe loop
onsists of three steps: (1) the pro
ess set PROC
(K) fa
tors the blo
k
olumnL(K : N;K); (2) the pro
ess set PROCr(K) fa
tors the blo
k row U(K;K + 1 : N);and (3) all the pro
esses perform the S
hur
omplement update by L(K + 1 : N;K) andU(K;K + 1 : N). The last step represents most of the work and also exhibits moreparallelism than the other two steps.In the a
tual implementation we use a pipelined organization so that pro
essesPROC
(K+1) will start step (1) of iteration K+1 as soon as the rank-k update (step (3))of iteration K to blo
k
olumn K+1 �nishes, before
ompleting the update to the trailingmatrix A(K + 1 : N;K + 2 : N) owned by PROC
(K + 1). Figure 11 illustrates this ideausing Steps K and K + 1 of the algorithm. In the �gure, we show the a
tivities of the2There is also
ommuni
ation involved in this task, but it is negligible, and so is omitted in thedis
ussion. 16

Figure 10: The parallel right-looking LU fa
torization.for blo
k K = 1 to N do(1) if [me 2 PROCC(K) ℄ thenFa
torize blo
k
olumn L(K : N;K)Send L(K : N;K) to the pro
esses in my row who need itelseRe
eive L(K : N;K) from one pro
ess in PROCC(K)endif(2) if [me 2 PROCR(K) ℄ thenFa
torize blo
k row U (K;K + 1 : N)Send U (K;K + 1 : N) to pro
esses in my
olumn who need itelseRe
eive U (K;K + 1 : N) from one pro
ess in PROCR(K) if I need itendif(3) for J = K + 1 to N dofor I = K + 1 to N doif [me 2 PROCR(I) and me 2 PROCC(J)and L(I;K) 6= 0 and U (K; J) 6= 0 ℄ thenUpdate trailing submatrix A(I; J) A(I; J) � L(I;K) � U (K; J)endifend forfour pro
ess groups along the time line. The path marked with the dashed line representsthe
riti
al path, that is, the parallel runtime
ould be redu
ed only if the
riti
al pathis shortened. The blo
k fa
torization tasks \F (: : :)" are usually on the
riti
al path,whereas the update tasks \U (: : :)" are often overlapped with the other tasks. There isla
k of parallelism for the \F (: : :)" tasks in Steps (1) and (2), be
ause only one set of
olumn pro
esses or row pro
esses parti
ipate in these tasks. This pipelining me
hanismalleviates this problem. For instan
e, on 64 pro
essors of the Cray T3E, we observedspeedups of between 10% and 40% over the non-pipelined implementation as in Figure 10.In an earlier version of the
ode, we used MPI's standard send and re
eive operationsmpi send and mpi re
v for the message transfer tasks \S (: : :)" and \R (: : :)". In Figure 11,we see idle time (longer send) during the sending of \S (L(:; K+1))" for pro
ess PK+1 onthe
riti
al path. This
ould happen if the sender and re
eiver are required to handshakebefore pro
eeding, as is the
ase with large messages that ex
eed the MPI internal bu�ersize [7℄. That is, pro
ess PK+1 posts mpi send long before pro
esses PROCr(K) post themat
hing mpi re
v, and the sender must be blo
ked to wait for mpi re
v. To avoid thissyn
hronization
ost, we introdu
ed the nonblo
king send and re
eive primitives, mpi isendand mpi ire
v as follows.� For the sender, we simply repla
e mpi send by mpi isend. This
ould eliminate theidle time during the send \S (L(:; K + 1))" shown in Figure 11.� For the re
eiver, we will post mpi ire
v mu
h earlier than we a
tually need the data.For example, for pro
esses PROCr(K) in Figure 11, we
ould post \R (L(:; K+1))"before \U (A(K+1 : N;K+1 : N))". That is, as soon as we have re
eived a message17

Figure 11: Illustration of the pipeline at Steps K and K + 1 during the SuperLUfa
torization.
Computation

(k−1)
U

(K:N, K:N)

U
(k)

(K+1:N, K+1:N)

F (U(K+1, :))F (L(:, K+1))U
(k)

(:, K+1) U
(k)

(:, K+2:N)

R (L(:, K+1))

R (L(:, K+1))U
(k)

(K+1:N, K+1:N) F (U(K+1, :))

U
(k)

(K+1:N, K+1:N)

r PROC (K)

F (L(:, K))

Other processes

(K:N, K:N)
(k−1)

Time

U

idle Wait for synchronization

PROC c (K)

Communication

R (L(:, K))

R (L(:, K))

(K:N, K:N) R (L(:, K))

U
(k−1)

S (L(:, K))

F (U(K, :)) R (L(:, K+1))S (U(K, :))

R (U(K, :)) i d l e S (L(:. K+1))

R (U(K, :))

R (U(K, :))

Critical Path

P
K+1

using mpi wait, we will post the mpi ire
v for the next message, before performingthe lo
al
omputation with the just-arrived message.To implement this idea, we need to provide user-level bu�er spa
e to a

ommodatethe messages in transit. Sin
e for ea
h pro
ess, there is only one outstanding message tobe re
eived, we only need one extra bu�er. Figure 12 sket
hes the pipelining algorithmusing mpi isend and mpi ire
v. The main di�eren
e from Figure 10 is in Step (3). In thenew algorithm, the original Step (3) is split into two substeps (3.1) and (3.2). Step (3.1)implements a look-ahead s
heme. Here, we only update the (K+1)-st blo
k
olumn, thenimmediately fa
torize this
olumn and post send and re
eive of the fa
torized
olumn forthe (K + 1)-st iteration of the loop. This message transfer will overlap with the rest ofthe trailing submatrix update appearing in Step (3.2). In Step (1), the pro
esses wait forthe posted send and re
eive to
omplete. In parti
ular, mpi wait in line 9 is mat
hed withthe posted mpi isend in line 23 (and 3); mpi wait in line 11 is mat
hed with the postedmpi ire
v in line 25 (and 5).We observed a big performan
e di�eren
e between the blo
king and nonblo
kingversions of the
odes on the Cray T3E. With an in
reasing number of pro
essors, themessage size is usually de
reasing. We show this in Table 3, be
ause the smaller messagesize implies that there is less handshaking between the sender and re
eiver in the blo
king
ode. Thus, the performan
e gain of the nonblo
king
ode on a large number of pro
essorsis less dramati
 than that on a smaller number of pro
essors. The largest performan
e gaino

urs at 4 pro
essors where the nonblo
king
ode is almost twi
e as fast as the blo
king
ode. 18

Figure 12: Parallel LU fa
torization with nonblo
king send and re
eive./* |- Set up the initial stage for the pipeline |- */1. if [me 2 PROC
(1) ℄ then2. Fa
torize blo
k
olumn L(1 : N; 1)3. Post send L(1 : N; 1) to the pro
esses in my row who need it ({ mpi isend {)4. else5. Post re
eive L(1 : N; 1) from one pro
ess in PROC
(1) if I need it ({ mpi ire
v {)6. endif/* |- Main pipeline loop |- */7. for blo
k K = 1 to N do8. (1) if [me 2 PROC
(K) ℄ then9. Wait for the posted send of L(K : N;K) to
omplete ({ mpi wait {)10. else11. Wait for the posted re
eive of L(K : N;K) to
omplete ({ mpi wait {)12. endif13. (2) if [me 2 PROCr(K) ℄ then14. Fa
torize blo
k row U (K;K + 1 : N)15. Send U (K;K + 1 : N) to pro
esses in my
olumn who need it16. else17. Re
eive U (K;K + 1 : N) from one pro
ess in PROCr(K) (if I need it)18. endif19. (3.1) if [K + 1 � N ℄ then/* |- Fa
tor-ahead s
heme |- */20. if [me 2 PROC
(K + 1) ℄ then21. Update (K + 1)-st
olumn A(:;K + 1) A(:;K + 1)� L(:;K) � U (K;K + 1)22. Fa
torize blo
k
olumn L(:;K + 1)23. Post send L(:;K + 1) to the pro
esses in my row who need it ({ mpi isend {)24. else25. Post re
eive L(:;K + 1) from one pro
ess in PROC
(K + 1) ({ mpi ire
v {)26. endif27. endif28. (3.2) for J = K + 2 to N do29. for I = K + 1 to N do30. if [me 2 PROCr(I) and me 2 PROC
(J)31. and L(I;K) 6= 0 and U (K; J) 6= 0 ℄ then32. Update trailing submatrix A(I; J) A(I; J)� L(I;K) �U (K; J)33. endif34. end for35. end for36. end for 19

Matrix Ordering Number of pro
essors4 8 16 32 64bbmat AMD 0.19 0.18 0.09 0.09 0.05e
l32 AMD 0.32 0.32 0.16 0.16 0.09inv-extrusion-1 AMD 0.24 0.24 0.12 0.12 0.07mixing-tank AMD 0.32 0.33 0.17 0.16 0.09Table 3: Maximum size of the message (in Mbytes) during the fa
torization.Figure 13: Parallel lower triangular solve L � x = b.1. Let my
ol (myrow) be my pro
ess
olumn (row)
oordinate in the pro
ess grid2. x = b; lsum = 0/* |- Compute leaf nodes |- */3. for blo
k K = 1 to N4. if (myrow = (K mod nprow) and my
ol = (K mod np
ol) and fre
v[K℄ = 0)5. x(K) = L(K;K)�1 � x(K)6. Send x(K) to the
olumn pro
esses PROCC(K)7. endif8. end for/* |- Compute internal nodes |- */9. while (I have more work) do10. Re
eive a message11. if (message is x(K))12. for ea
h of my L(I;K) 6= 0; I > K13. lsum(I) = lsum(I) + L(I;K) � x(K)14. fmod(I) = fmod(I) � 115. if (fmod(I) = 0)16. Send lsum(I) to the diagonal pro
ess that holds x(I)17. endif18. end for19. else if (message is lsum(K))20. x(K) = x(K)� lsum(K);21. fre
v(K) = fre
v(K) � 122. if (fre
v(K) = 0)23. x(K) = L(K;K)�1 � x(K)24. Send x(K) to the
olumn pro
esses PROCC(K)25. endif26. endif27. end while 20

3.4 Parallel triangular solutionThe sparse triangular solves are also designed around the same distributed data stru
ture(i.e., there is no data re-distribution). The forward substitution pro
eeds from the bottomof the elimination tree (etree of AT + A) to the root, whereas the ba
k substitutionpro
eeds from the root to the bottom. Figure 13 outlines the algorithm for sparse lowertriangular solve. The algorithm is based on a sequential \inner-produ
t" formulation. Inthis formulation, before we solve for the K-th subve
tor x(K), the update from the inner-produ
t of L(K; 1 : K � 1) and x(1 : K � 1) must be a

umulated and then subtra
tedfrom b(K). The diagonal pro
ess, at the
oordinate (K mod nprow, K mod np
ol) of thepro
ess grid, is responsible for solving for x(K). Sin
e ea
h blo
k row L(K; 1 : K � 1)is distributed among the row pro
ess set PROCR(K), the inner-produ
t is formed ina distributed way. Ea
h pro
ess stores the partial sum in lsum(K) lo
ally. After ita

umulates all the produ
t
ontributions from various blo
ks, it sends the partial sumto the diagonal pro
ess that holds x(K). This is like a redu
tion operation among arow pro
ess set, ex
ept that some pro
esses may not parti
ipate in this redu
tion if theydo not have any nonzero blo
k in this blo
k row. Two
ounters, fre
v and fmod, areused to fa
ilitate the asyn
hronous exe
ution of di�erent operations. fmod(K)
ounts thenumber of lo
al blo
k produ
ts to be summed into lsum(K). When fmod(K) be
omeszero, the partial sum lsum(K) is sent to the owner of x(K). fre
v[K℄
ounts the numberof pro
ess updates to x(K) to be re
eived by the owner of x(K). This is needed be
ause,due to sparsity, not all pro
esses in PROCR(K)
ontribute to the update. When fre
v(K)be
omes zero, all the needed inner-produ
t updates to x(K) are
omplete and x(K)
anthen be solved.The exe
ution of the program is message-driven. A pro
ess may re
eive twotypes of messages, one is the partial sum lsum(K), another is the solution subve
torx(K). Appropriate a
tion is taken a

ording to the message type. The asyn
hronous
ommuni
ation enables large overlapping between
ommuni
ation and
omputation. Thisis very important be
ause the
ommuni
ation to
omputation ratio is mu
h higher intriangular solve than in fa
torization.The algorithm for the upper triangular solve is similar, However, be
ause of the roworiented storage s
heme used for matrix U , there is a slight
ompli
ation in the a
tualimplementation. Namely, we have to build two verti
al linked lists to enable rapid a

essof the matrix entries in a blo
k
olumn of U .4 Parallel performan
e and s
alabilityIn this se
tion, we restri
t our attention to several large matri
es sele
ted from our testbedin Table 1, be
ause only large problems need to use parallel ma
hines. These matri
esare representative of di�erent appli
ation domains. The
hara
teristi
s of these matri
esare given in Table 4. The
on�guration of the GESP algorithm in
ludes steps (2) to (5)in Figure 1, and iterative re�nement in step (6). Only twotone requires step (1). Thetiming results have been obtained on the Cray T3E-900 (512 450 MHz EV-5 pro
essors,256 Mbytes of memory per pro
essor, 900 peak Mega
op rate per pro
essor) installed atNERSC. 21

After MC64 nnz(L+ U) FlopsOrder nnz(A) NumSym StrSym StrSym (106) (109)bbmat 38744 1771722 0.02 0.54 0.50 41.1 34.0e
l32 51993 380415 0.66 0.93 0.93 42.4 68.3inv-extrusion-1 30412 1793881 0.73 0.97 0.86 28.4 28.0mixing-tank 29957 1995041 0.98 1.00 0.91 41.2 64.6twotone 120750 1224224 0.14 0.28 0.43 11.9 8.0wang4 26068 177196 0.19 1.00 1.00 10.7 9.1Table 4: Chara
teristi
s of the large matri
es. NumSym is the fra
tion of nonzerosmat
hed by equal values in symmetri
 lo
ations. StrSym is the fra
tion of nonzerosmat
hed by nonzeros in symmetri
 lo
ations.4.1 Fa
torizationWe show in Table 5 the fa
torization time of SuperLU DIST. The symboli
 analysis is notyet parallel. Although it takes very little time, its parallelization would enhan
e memorys
alability, and will be our future work. There is an on-going work by Riedy on parallelbipartite mat
hing algorithm [53℄. We will use it in pla
e of MC64 in the future. For now,we start with a
opy of the entire matrix on ea
h pro
essor, and run steps (1) through(3) independently on ea
h pro
essor. The third
olumn of Table 5 reports the time spentin the symboli
 analysis. The memory requirement of the symboli
 analysis is small,be
ause we only store and manipulate the supernodal graph of L and the skeleton graphof U , whi
h are mu
h smaller than the graphs of L and U . (In the skeleton graph ofU , only the �rst nonzero in a segment of U is stored.) The subsequent
olumns in thetable show the numeri
al fa
torization time with a varying number of pro
essors. For allthese matri
es, the algorithm
an eÆ
iently use 128 pro
essors. Beyond 128 pro
essors,not all matri
es
an bene�t from the additional pro
essor power. Only bbmat with NDordering [43℄ and e
l32 with AMD [2℄
an bene�t from using 512 pro
essors. Our la
kof other large unsymmetri
 systems gives us few data points in this regime. To furtheranalyse the s
alability of our solvers, we
onsider three dimensional regular grid problemsin Se
tion 4.4.We also observe that the algorithm does not always fully bene�t from the redu
tionin the number of operations potentially available from the use of a nested disse
tionordering (see bbmat). There are several reasons and the improvement remains as futurework. Firstly, the algorithm does not fully exploit the parallelism of the elimination dags.Se
ondly, the pipelining me
hanism does not fully bene�t from the sparsity of the fa
tors(a blo
ked
olumn fa
torization should be implemented). This also explains why it doesnot fully bene�t from the better balan
ed tree generated by a nested disse
tion ordering.To better understand the performan
e, we show in Table 6 the average
ommuni
ationvolume. The speed of
ommuni
ation
an depend very mu
h on the number and thesize of the messages and we also indi
ate the maximum size of the messages and theaverage number of messages per pro
essor. With an in
reasing number of pro
essors, the
ommuni
ation volume and the size of the messages usually de
rease, whereas the totalnumber of messages usually in
rease. This implies that on larger numbers of pro
essors,it is important to be able to overlap the
omputation with
ommuni
ation of many small22

Matrix Ordering Symb Number of pro
essorsTime 1 2x2 2x4 4x4 4x8 8x8 8x16 8x32 16x32bbmat AMD 4.6 | 64.7 36.6 21.3 12.8 9.2 7.2 6.7 6.8ND 6.3 | 132.9 72.5 39.8 23.5 15.6 11.1 9.9 9.6e
l32 AMD 6.0 | 106.8 56.7 31.2 18.3 12.3 8.2 6.8 6.5ND 3.9 | 48.5 26.6 15.7 9.6 7.6 5.6 5.7 6.1inv-extrusion-1 ND 2.4 68.2 21.3 12.8 8.2 5.6 4.9 3.7 3.5 3.8mixing-tank ND 2.5 88.1 25.2 14.2 8.6 5.6 4.6 3.1 3.1 3.1twotone MC64+AMD 3.2 | 103.8 57.8 32.8 19.5 13.3 9.7 7.6 9.0wang4 AMD 1.3 57.0 17.8 10.6 6.8 4.8 4.3 3.4 3.1 3.7Table 5: Fa
torization time (in se
onds) on the Cray T3E. \|" indi
ates not enoughmemory. The best time is indi
ated in bold fa
e. Note: MC64 is needed only by twotone,and the time is 1.6 se
onds.messages. Our use of nonblo
king sends and re
eives in the loosely syn
hronous pipeliningalgorithm fa
ilitates this.Matrix Ordering Number of pro
essors2x2 4x4 8x8Max Vol. #Mess Max Vol. #Mess Max Vol. #Messbbmat AMD 0.18 81 23412 0.09 61 34176 0.05 35 35035ND 0.17 82 30698 0.09 62 45598 0.04 36 50925e
l32 AMD 0.32 90 27437 0.16 67 37486 0.09 39 34981ND 0.25 56 28966 0.13 42 41172 0.07 24 41271inv-extrusion-1 ND 0.15 31 17774 0.08 23 25824 0.05 13 27123mixing-tank ND 0.19 40 13667 0.11 30 19635 0.05 18 19064twotone MC64+AMD 0.26 27 120006 0.15 20 153995 0.05 11 104906wang4 AMD 0.19 24 27728 0.10 18 34495 0.05 10 27561Table 6: Maximum size of the messages (Max in Mbytes), average volume of
ommuni
ation (Vol. in Mbytes) and number of messages per pro
essor (#Mess).4.2 Triangular solutionIn this se
tion, we fo
us on the time spent to obtain the solution. We apply enough stepsof iterative re�nement to ensure that the
omponentwise relative ba
kward error (berr) isless than " � 10�16. Ea
h step of iterative re�nement involves not only a forward and aba
kward solve but also a matrix-ve
tor produ
t with the original matrix. In Table 7, wereport both the time to perform one solution step (using the fa
torized matrix to solveAx = b) and, the time to improve the solution using iterative re�nement (lines with \IR").On a small number of pro
essors (less than 8), the solve phase is almost two orders ofmagnitude less
ostly than the fa
torization. On a large number of pro
essors, be
ause thesolve phase is relatively less s
alable than the fa
torization phases, the di�eren
e dropsto one order of magnitude. On appli
ations for whi
h a large number of solves mightbe required per fa
torization this
ould be
ome
riti
al for the performan
e and will be23

Matrix Ordering IR Number of pro
essors(steps) 1 2x2 2x4 4x4 4x8 8x8 8x16 8x32 16x32bbmat AMD no | 1.39 1.25 0.78 0.75 0.49 0.50 0.40 0.38IR (3) | 5.00 4.35 2.84 2.69 1.88 1.74 1.44 1.38ND no | 2.01 1.59 1.03 0.89 0.65 0.60 0.57 0.43IR (3) | 6.86 5.43 3.66 3.19 2.44 2.11 1.97 1.58e
l32 AMD no | 1.87 1.96 1.09 1.09 0.68 0.73 0.50 0.51IR (2) | 4.17 4.47 2.66 2.54 1.66 1.68 1.19 1.22ND no | 1.49 1.55 0.95 0.95 0.64 0.64 0.47 0.43IR (2) | 3.37 3.67 2.47 2.25 1.63 1.51 1.13 1.08inv-extrusion-1 ND no 1.50 0.73 0.67 0.43 0.39 0.29 0.27 0.22 0.19IR (3) 6.19 2.77 2.44 1.65 1.51 1.16 1.00 0.85 0.75mixing-tank ND no 1.54 0.64 0.57 0.35 0.31 0.21 0.22 0.17 0.15IR (3) 6.46 2.56 2.12 1.42 1.25 0.92 0.85 0.69 0.64twotone MC64+AMD no | 2.63 2.95 1.93 1.84 1.28 1.24 0.93 0.85IR (3) | 9.00 9.84 6.95 6.68 4.97 4.50 3.43 3.18wang4 AMD no 1.04 0.63 0.66 0.42 0.43 0.28 0.27 0.22 0.19IR (2) 2.34 1.43 1.48 0.99 1.00 0.69 0.64 0.52 0.46Table 7: Solve time (in se
onds) on the Cray T3E. \+IR" shows the time spent improvingthe initial solution using iterative re�nement. \|" indi
ates not enough memory. Thebest time is indi
ated in bold fa
e.addressed in the future. The
ost of iterative re�nement
an signi�
antly in
rease the
ostof obtaining a solution. The use of MC64 to prepro
ess the matrix
an redu
e the number ofsteps of iterative re�nement, Although both the solve times and iterative re�nement timesde
rease very slowly with an in
reasing number of pro
essors, they still keep de
reasingup to 512 pro
essors.4.3 Memory usageIn Table 8, we report the amount of memory a
tually used during the LU fa
torizationphase. This in
ludes both reals and integers for the matri
es, the working arrays, and the
ommuni
ation bu�ers. We noti
e a signi�
ant redu
tion in the required memory perpro
essor when in
reasing the number of pro
essors, showing good memory s
alability.We also observe that there is little di�eren
e between the average and maximum memoryusage, showing that the algorithm is well balan
ed.Note that memory s
alability
an be
riti
al on globally addressable platforms whereparallelism in
reases the total memory used. On purely distributed ma
hines su
h as theT3E, the main fa
tor remains the memory used per pro
essor whi
h should allow largeproblems to be solved when enough pro
essors are available.4.4 S
alabilityAs stated in Introdu
tion, our goal is to make sparse LU fa
torization as s
alable assparse Cholesky. In this se
tion we present the eÆ
ien
y of our fa
torization algorithm on24

Matrix Ordering Number of pro
essors2x2 4x4 8x8Avg. Max. Avg. Max. Avg. Max.bbmat AMD 113 114 50 51 33 34ND 124 128 60 61 43 44e
l32 AMD 113 115 42 44 24 25ND 79 81 33 34 21 22inv-extrusion-1 ND 47 48 22 22 15 16mixing-tank ND 55 56 23 23 14 15twotone MC64+AMD 66 80 35 41 24 24wang4 AMD 33 34 14 14 8 9Table 8: Memory used during fa
torization (in Megabytes, per pro
essor).model problems, both analyti
ally and experimentaly, and show that the algorithm andthe implementation indeed meet our goal.Consider the 3D
ubi
 grid problem using the standard nested disse
tion ordering,the �ll in the fa
tored matrix is O(N4=3) and the number of
oating-point operationsto fa
torize the matrix is O(N2) [29℄. Let the P pro
essors be arranged as a squarepro
ess grid. In our parallel algorithm (Figure 12), ea
h nonzero element is sent to atmost pP pro
essors. The total
ommuni
ation overhead is O(N4=3pP). Thus, when thetotal amount of work N2 in
reases proportionally with the overhead N4=3pP , the paralleleÆ
ien
y
an be maintained. So our algorithm has an iso-eÆ
ien
y fun
tion N2 =
 �P 3=2(work-pro
essor relation), for some
onstant
. Re-writing this, we have N4=3 =
 � P(memory-pro
essor relation). That is, the parallel eÆ
ien
y
an be maintained
onstantif the �ll per pro
essor is
onstant. This iso-eÆ
ien
y fun
tion is the same as the denseLU algorithm in S
aLAPACK [13℄, and the sparse Cholesky algorithm in PSPACES [36℄.We now report the measured performan
e for the 11-point dis
retization of theLapla
ian operator on three-dimensional (NX, NY, NZ) grid problems. Both 3D
ubi
(NX=NY=NZ) and re
tangular (NX, NX/4, NX/8) grids are used. When in
reasing thenumber of pro
essors, we tried to maintain a
onstant number of operations per pro
essorwhile keeping as mu
h as possible the same shape of grids. The size of the grids used,the number of operations, the timings, the Mega
op rates, and the parallel eÆ
ien
y arereported in Table 9.If the algorithm were perfe
tly s
alable, the parallel runtime would be
onstant.Be
ause of various overheads, this is not usually true. But from the timing results wesee that the time in
rease is not very mu
h even up to 128 pro
essors. The resultson parallel eÆ
ien
y show that the algorithm is more s
alable for
ubi
 grids than forre
tangular grids, sin
e the
ubi
 grids represent the best possible regular and balan
edproblems. Here, the eÆ
ien
y on p pro
essors is
omputed as the ratio of the Mega
op rateper pro
essor on p pro
essors over its Mega
op rate on 1 pro
essor. For
ubi
 grids, thealgorithm maintains greater than 95% eÆ
ien
y up to 16 pro
essors, and greater than 75%eÆ
ien
y even up to 128 pro
essors. But for re
tangular grids, the respe
tive eÆ
ien
y�gures are 80% and 50%. 25

Cubi
 grids Re
tangular gridsPro
essors Grid size
ops time M
ops E�. Grid size
ops time M
ops E�.(109) (%) NX NY NZ (109) (%)1 29 7.2 56.3 127.2 100 96 24 12 4.5 33.3 133.4 1002 33 15.9 61.8 257.1 101 110 28 13 9.6 37.6 250.9 944 36 26.8 52.0 514.9 101 120 30 15 17.9 36.3 491.5 928 41 60.0 60.2 996.5 98 136 34 17 36.6 36.3 923.0 8616 46 117.9 59.8 1971.5 97 152 38 19 72.7 42.2 1719.6 8132 51 224.9 64.7 3476.7 85 168 42 21 135.3 43.8 3084.6 7264 57 444.7 67.3 6612.6 81 184 46 23 236.0 46.6 5059.3 59128 64 886.4 71.1 12462.9 77 208 52 26 485.6 56.1 8652.2 51Table 9: Fa
torization time (in se
onds), the Mega
op rate, and parallel eÆ
ien
y (E�.)on Cray T3E. bbmat e
l32 inv-extrusion-1 mixing-tank twotone wang4Load balan
e measureBfa
t .78 .83 .87 .92 .47 .84Bsol .86 .89 .93 .94 .52 .78Fra
tion of the time spent in
ommuni
ation and syn
hronizationfa
t .64 .67 .64 .55 .76 .78sol .85 .83 .86 .85 .84 .84Table 10: Load balan
e and
ommuni
ation overhead on 64 pro
essors Cray T3E.4.5 Load balan
e and
ommuni
ation/syn
hronization overheadThe eÆ
ien
y of a parallel algorithm depends mainly on how the workload is distributedand how mu
h time is spent in
ommuni
ation. One way to measure load balan
e is asfollows. Let fi denote the number of
oating-point operations performed on pro
ess i.We
ompute the load balan
e fa
tor B = Pi(fi)P maxi(fi) . In other words, B is the averageworkload divided by the maximum workload. It is
lear that 0 < B � 1, and higher Bindi
ates better load balan
e. The parallel runtime is at least the runtime of the slowestpro
ess, whose workload is highest. In Table 10 we present the load balan
e fa
tor B forboth fa
torization and solve phases. As
an be seen from the table, the distribution ofworkload is good for most matri
es, ex
ept for twotone.In the same table, we also show the fra
tion of the runtime spent in
ommuni
ationor syn
hronization, i.e., the parallel overhead. This in
ludes the time for MPI
alls andthe idle time waiting for a message to be sent or to arrive. The amount of overheadis quite ex
essive; on 64 pro
essors, more than 50% of the total fa
torization time isin overhead. For triangular solve, whi
h has relatively smaller amount of
omputation,
ommuni
ation and syn
hronization take more than 85% of the total time. We expe
tthe per
entage of overhead will be even higher with more pro
essors, be
ause the totalamount of
omputation is more or less
onstant.Although twotone is a relatively large matrix, its fa
torization does not s
ale as well asfor the other large matri
es. One reason is that the present submatrix to pro
ess mappingresults in very poor load distribution. Another reason is due to poor task s
heduling that26

results in large overhead. When we look further into the overhead, we �nd that mostoverhead
omes from the idle pro
essors either waiting to re
eive a
olumn blo
k of L sentfrom a pro
ess
olumn on the left (step (1) in Figure 12), or waiting to re
eive a row blo
kof U sent from a pro
ess row from above (step (2) in Figure 12). Clearly, the
riti
al pathof the algorithm is in step (1), whi
h must preserve
ertain pre
eden
e relation betweenloop iteration steps. Our pipelining method shortens the
riti
al path to some extent, butwe expe
t the length of the
riti
al path
an be further redu
ed by a more sophisti
atedDAG (task graph) s
heduling. For the solve, we �nd that most overhead
omes from theidle pro
essors waiting to re
eive a message (line 10 in Figure 13). So on ea
h pro
essthere is not mu
h work to do but a large amount of idle time. These syn
hronizationoverheads also o

ur in the other matri
es, but the problems are not so pronoun
ed astwotone.Another problem with twotone is that supernode size (or blo
k size) is very small, only2
olumns on average. This results in poor unipro
essor performan
e and low Mega
oprate.4.6 Large appli
ationsIn this se
tion, we des
ribe two appli
ation areas in whi
h SuperLU DIST has played a
riti
al role. The �rst appli
ation is in the solution of a long-standing problem of s
atteringin a quantum system of three
harged parti
les. This requires solving the
omplex,nonsymmetri
, and very ill-
onditioned linear systems. The largest system solved is oforder 8 million. SuperLU DIST is used in building the blo
k diagonal pre
onditioners forthe CGS iterative solver. The number of CGS iterations ranges between 12 to 35. Sin
eea
h CGS iteration requires two pre
onditioning steps, 24 to 70 solutions of the diagonalblo
ks are required. For a blo
k of size 1 million, SuperLU DIST takes 1209 se
onds tofa
torize using 64 pro
essors of the IBM SP at NERSC (this is done only on
e), and ittakes 26 se
onds to perform triangular solutions (this needs to be done repeatedly in ea
hpre
onditioning step). The total exe
ution time is about 1 hour. See [11℄ for more details.The s
ienti�
 breakthrough result was reported in a
over arti
le of S
ien
e [52℄.More re
ently, we have been
ollaborating with resear
hers at the Stanford LinearA

elerator Center to develop alternative eigensolvers for Omega3P, a widely usedele
tromagneti
s
ode in a

elerator design. In this appli
ation the interior eigenvalues andeigenve
tors of a large sparse generalized eigenvalue problem are needed. We integratedSuperLU DIST with PARPACK [44℄, a parallel Lan
zos
ode, to
onstru
t a shift-and-inverteigensolver. For a system of order 1.3 million, PARPACK needs about 4.5 solves for ea
heigenpair. For ea
h solve, SuperLU DIST takes 39 se
onds using 32 pro
essors of the IBMSP at NERSC. The fa
torization is done on
e, and takes 553 se
onds. The total time for�nding 10 interior eigenpairs is 42 minutes.5 Related workDu� and Koster [22℄ studied the bene�ts of using MC64 to permute large entries onto thediagonal in both dire
t and iterative solvers, and in pre
onditioning. For the multifrontaldire
t solver, they showed that using the large-diagonal permutation, the number ofdelayed pivots were vastly redu
ed in fa
torization. In the iterative methods su
h as27

GMRES, BiCGSTAB and QMR using ILU pre
onditioners, they showed that
onvergen
erate is substantially improved in many
ases when the large-diagonal permutation isemployed. Benzi, Haws and T�uma
ondu
ted more extensive experiments on the e�e
tof MC64 on pre
onditioning strategies [12℄. Chen [14℄ also
onsidered using MC64 to avoidpivoting as mu
h as possible in the ILU methods.Amestoy et al. developed a distributed-memory multifrontal solver,
alled MUMPS [3℄.It is based on the symmetri
 pattern of AT +A, and performs partial threshold pivoting.It uses partial stati
 mapping based on the elimination tree of AT + A (1D for thefrontal matri
es and 2D for the root). The distributed s
heduling algorithm for LUfa
torization is dynami
 and asyn
hronous. We performed a
omprehensive
omparisonbetween SuperLU DIST and MUMPS [7℄. The general observations are: SuperLU DISTmay needone more step of iterative re�nement than MUMPS to a
hieve the same level of a

ura
y;SuperLU DIST preserves the sparsity and the asymmetry of the fa
tors better, and usuallyrequires less memory; MUMPS is faster on smaller number of pro
essors (e.g., less than 64),but SuperLU DIST is faster on larger number of pro
essors and shows better s
alability.A few other distributed-memory unsymmetri
 sparse dire
t solvers have beendeveloped. Comparing SuperLU DIST with those solvers remains future work. SPOOLESis a supernodal, left-up-looking solver [9℄. The �ll redu
ing ordering is a hybrid approa
h
alled multise
tion [10℄, whi
h is applied to the stru
ture of AT +A. It performs thresholdrook pivoting with both row and
olumn inter
hanges. The task dependen
y graph is theelimination tree of AT + A. S+ is a supernodal, right-looking solver [26℄. The algorithmis based on the following stati
 information. The sparsity pattern of the Householder QRfa
torization of A
ontains the union of all sparsity patterns of L and U for all possible rowinter
hanges [28, 30℄. This has been used to do both memory allo
ation and
omputation
onservatively (on possibly zero entries), but the stru
tural upper bound
an be arbitrarilyloose, parti
ularly for matri
es arising from
ir
uit and devi
e simulations.6 Con
luding remarks and future workIn this paper, we presented the details of the algorithms used in SuperLU DIST solver.We demonstrated numeri
al stability of the GESP algorithm, and showed that a s
alableimplementation is feasible for this algorithm be
ause of the stati
 data stru
ture ands
heduling optimizations. Another added bene�t of GESP is that it opens new possibilitiesto study better �ll redu
ing ordering algorithms for unsymmetri
 LU fa
torization. Ourgoal is to have sparse LU fa
torization as s
alable as sparse Cholesky. This is inherently aharder problem than sparse Cholesky, be
ause two di�erent fa
tors L and U are involved.Our future work remains in several areas.� Parallel preordering and symboli
 analysis.Steps (1) and (3) of the GESP algorithm (see Figure 1) are still sequential. Althoughthey usually do not take mu
h time, we need to parallelize this step in order toimprove memory s
alability, if not timewise. The parallel algorithm may be di�erentfrom the sequential algorithm used in MC64, be
ause MC64 is inherently serial.� Improve parallel eÆ
ien
y of fa
torization and triangular solvesAlthough the solver exhibits good s
alability now, the parallel overhead is still large28

for large numbers of pro
essors (see Se
tion 4.5). Several improvements
ould bemade. For better load balan
e, we
an use more general fun
tions than 2D blo
k
y
li
 to map submatri
es to pro
essors. To redu
e the syn
hronization overhead,we
an relax some task s
heduling
onstraints imposed by the
urrent pipeliningalgorithm. For example, the blo
ks in a blo
k
olumn
an be fa
torized by the
olumn pro
esses independently if sparsity permits doing so. A more sophisti
ateds
heduling algorithm
an be implemented to exploit the parallelism from theelimination DAGs, whi
h
ould simultaneously s
hedule independent tasks frommultiple steps of the fa
torization (see Figure 12). We expe
t these improvementswill have a large impa
t for very sparse and/or very unsymmetri
 matri
es, su
h astwotone, and for the orderings that give wide and bushy elimination DAGs, su
has nested disse
tion.To speed up the triangular solve, we may apply some graph
oloring heuristi
 toredu
e the number of parallel steps [42℄. There are also alternative algorithmsother than substitutions, su
h as those based on partitioned inversion [1℄ orsele
tive inversion [51℄. However, these algorithms usually require prepro
essing ordi�erent matrix distributions than the one used in our fa
torization. Whether theprepro
essing and redistribution will o�set the bene�t o�ered by these algorithmswill probably depend on the number of right-hand sides.� Improve numeri
al robustness.More te
hniques
an be used; these in
lude performing iterative re�nement withextra pre
ise residuals [45℄ and using dynami
 pre
ision during the fa
torization, seeAppendix A.A
knowledgmentsWe would like to thank Patri
k Amestoy, Iain Du�, Jean-Yves L'Ex
ellent and Ri
h Vudu
for very helpful dis
ussions on the subje
t, whi
h greatly improves the presentation of themanus
ript. We thank Patri
k Amestoy for providing us the 3D grid generation
ode fors
alability study. We thank the anonymous referees for their
onstru
tive
omments inhelping us revise the paper.Referen
es[1℄ Fernando L. Alvarado, Alex Pothen, and Robert S
hreiber. Highly parallel sparse triangular solution.In Alan George, John R. Gilbert, and Joseph W.H. Liu, editors, Graph theory and sparse matrix
omputation, pages 159{190. Springer-Verlag, New York, 1993.[2℄ P. R. Amestoy, T. A. Davis, and Iain S. Du�. An approximate minimum degree ordering algorithm.SIAM J. Matrix Analysis and Appli
ations, 17(4):886{905, 1996. Also University of Florida TR-94-039.[3℄ P. R. Amestoy, I. S. Du�, J.-Y. L'Ex
ellent, and J. Koster. A fully asyn
hronous multifrontal solverusing distributed dynami
 s
heduling. SIAM Journal on Matrix Analysis and Appli
ations, 23(1):15{41, 2001.[4℄ P. R. Amestoy, X. S. Li, and E. G. Ng. Diagonal markowitz s
heme with lo
al symmetrization.Te
hni
al report, Lawren
e Berkeley National Laboratory, in preparation.29

[5℄ P. R. Amestoy and C. Puglisi. An unsymmetrized multifrontal LU fa
torization. Te
h. Rep.RT/APO/00/3, ENSEEIHT-IRIT, 2000. Also Lawren
e Berkeley National Laboratory report LBNL-46474.[6℄ Patri
k R. Amestoy and Iain S. Du�. Memory management issues in sparse multifrontal methods onmultipro
essors. The International Journal of Super
omputer Appli
ations, 7(1):64{82, Spring 1993.[7℄ Patri
k R. Amestoy, Iain S. Du�, Jean-Yves L'Ex
ellent, and Xiaoye S. Li. Analysis and
omparisonof two general sparse solvers for distributed memory
omputers. ACM Transa
tions on Mathemati
alSoftware, 27(4):388{421, De
ember 2001.[8℄ M. Arioli, J. W. Demmel, and I. S. Du�. Solving sparse linear systems with sparse ba
kward error.SIAM J. Matrix Anal. Appl., 10(2):165{190, April 1989.[9℄ C. Ash
raft and R. G. Grimes. SPOOLES: An obje
t oriented sparse matrix library. In Pro
eedingsof the Ninth SIAM Conferen
e on Parallel Pro
essing for S
ienti�
 Computing, San Antonio, Texas,Mar
h 22{24, 1999. http://www.netlib.org/linalg/spooles.[10℄ C. Ash
raft and J. Liu. Robust ordering of sparse matri
es using multise
tion. SIAM J. MatrixAnalysis and Appli
ations, 19:816{832, 1998.[11℄ M. Baerts
hy and X. S. Li. Solution of a three-body poblem in quantum me
hani
s. In Pro
eedingsof SC2001: High Performan
e Networking and Computing Conferen
e, Denver, Colorado, November10{16 2001.[12℄ M. Benzi, J. C. Haws, and M. Tuma. Pre
onditioning highly inde�nite and nonsymmetri
 matri
es.SIAM J. S
ienti�
 Computing, 22:1333{1353, 2000.[13℄ L. S. Bla
kford, J. Choi, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. S
aLAPACK Users' Guide. SIAM, Philadelphia,1997. 325 pages.[14℄ Tzu-Yi Chen. Pre
onditioning sparse matri
es for
omputing eigenvalues and
omputing linear systemsof equations. PhD thesis, Computer S
ien
e Division, UC Berkeley, De
ember 2001.[15℄ T. A. Davis and I. S. Du�. A
ombined unifrontal/multifrontal method for unsymmetri
 sparsematri
es. ACM Trans. Mathemati
al Software, 25(1):1{19, 1999.[16℄ Timothy A. Davis. University of Florida sparse matrix
olle
tion.http://www.
ise.u
.edu/�davis/sparse.[17℄ Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond Ng. A
olumn approximateminimum degree ordering algorithm. Te
hni
al Report TR-00-005, Computer and InformationS
ien
es Department, University of Florida, 2000. submitted to ACM Trans. Math. Software.[18℄ James W. Demmel. Applied Numeri
al Linear Algebra. SIAM, Philadelphia, 1997.[19℄ James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu. Asupernodal approa
h to sparse partial pivoting. SIAM J. Matrix Analysis and Appli
ations, 20(3):720{755, 1999.[20℄ James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asyn
hronous parallel supernodal algorithmfor sparse gaussian elimination. SIAM J. Matrix Analysis and Appli
ations, 20(4):915{952, 1999.[21℄ Iain S. Du� and Ja
ko Koster. The design and use of algorithms for permuting large entries to thediagonal of sparse matri
es. Te
hni
al Report RAL-TR-97-059, Rutherford Appleton Laboratory,1997.[22℄ Iain S. Du� and Ja
ko Koster. The design and use of algorithms for permuting large entries to thediagonal of sparse matri
es. SIAM J. Matrix Analysis and Appli
ations, 20(4):889{901, 1999.[23℄ I.S. Du�, I.M. Erisman, and J.K. Reid. Dire
t Methods for Sparse Matri
es. Oxford University Press,London, 1986.[24℄ I.S. Du�, R.G. Grimes, and J.G. Lewis. Users' guide for the Harwell-Boeing sparse matrix
olle
tion(release 1). Te
hni
al Report RAL-92-086, Rutherford Appleton Laboratory, De
ember 1992.[25℄ George E. Forsythe and Cleve B. Moler. Computer Solution of Linear Algebrai
 Systems. Prenti
s-Hall, Englewood Cli�s, NJ, USA, 1967. 30

[26℄ C. Fu, X. Jiao, and T. Yang. EÆ
ient sparse LU fa
torization with partial pivoting on distributedmemory ar
hite
tures. IEEE Trans. Parallel and Distributed Systems, 9(2):109{125, 1998.[27℄ A. George. Nested disse
tion of a regular �nite element mesh. SIAM J. Numeri
al Analysis, 10:345{363, 1973.[28℄ Alan George, Joseph Liu, and Esmond Ng. A data stru
ture for sparse QR and LU fa
torizations.SIAM J. S
i. Stat. Comput., 9:100{121, 1988.[29℄ Alan George and Joseph W. H. Liu. Computer Solution of Large Sparse Positive De�nite Systems.Prenti
e Hall, Englewood Cli�s, NJ, 1981.[30℄ Alan George and Esmond Ng. Symboli
 fa
torization for sparse Gaussian elimination with partialpivoting. SIAM J. S
i. Stat. Comput., 8(6):877{898, 1987.[31℄ John R. Gilbert. Predi
ting stru
tures in sparse matrix
omputations. SIAM J. Matrix Analysis andAppli
ations, 15(1):62{79, January 1994.[32℄ John R. Gilbert and Joseph W.H. Liu. Elimination stru
tures for unsymmetri
 sparse LU fa
tors.SIAM J. Matrix Anal. Appl., 14(2):334{352, April 1993.[33℄ G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD,Third edition, 1996.[34℄ A. Gupta. WSMP: Watson Sparse Matrix Pa
kage. Te
hni
al report, IBM resear
h division, T.J.Watson Resear
h Center, Yorktown Heights, 2000. http://www.
s.umn.edu/�agupta/wsmp.html.[35℄ A. Gupta. Improved symboli
 and numeri
al fa
torization algorithms for unsymmetri
 sparse matri
es.Te
hni
al Report RC 22137 (99131), IBM Resear
h, 2001.[36℄ A. Gupta, G. Karypis, and V. Kumar. Highly s
alable parallel algorithms for sparse matrixfa
torization. IEEE Trans. Parallel and Distributed Systems, 8:502{520, 1997.[37℄ A. Gupta and V. Kumar. Optimally s
alable parallel sparse
holesky fa
torization. In The 7th SIAMConferen
e on Parallel Pro
essing for S
ienti�
 Computing, pages 442{447, 1995.[38℄ M. T. Heath and P. Raghavan. Performan
e of a fully parallel sparse solver. Int. Journal ofSuper
omputer Appli
ations, 11(1):49{64, 1997.[39℄ B. Hendri
kson and R. Leland. The CHACO User's Guide. Version 1.0. Te
hni
al Report SAND93-2339 � UC-405, Sandia National Laboratories, Albuquerque, 1993.[40℄ P. Henon, P. Ramet, and J. Roman. A mapping and s
heduling algorithm for parallel sparse fan-innumeri
al fa
torization. In EuroPar'99 Parallel Pro
essing, Le
ture Notes in Computer S
ien
e, No.1685, pages 1059{1067, Berlin, Heidelberg, New York, 1999. Springer-Verlag.[41℄ HSL. A
olle
tion of Fortran
odes for large s
ale s
ienti�

omputation, 2000.http://www.
se.
lr
.a
.uk/A
tivity/HSL.[42℄ Mark T. Jones and Paul E. Plassmann. S
alable iterative solution of sparse linear systems. ParallelComputing, (20):753{773, 1994.[43℄ G. Karypis and V. Kumar. MeTiS { A Software Pa
kage for Partitioning Unstru
tured Graphs,Partitioning Meshes, and Computing Fill-Redu
ing Orderings of Sparse Matri
es { Version 4.0.University of Minnesota, September 1998.[44℄ Ri
h Lehou
q, Kristi Mas
hho�, Denny Sorensen, and Chao Yang. Parallel ARPACK.http://www.
aam.ri
e.edu/�kristyn/parpa
k home.html.[45℄ X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang,A. Kapur, M. C. Martin, B. J. Thompson, T. Tung, and D. J. Yoo. Design, Implementation andTesting of Extended and Mixed Pre
ision BLAS. ACM Trans. Mathemati
al Software, 2002. toappear. Also Te
hni
al Report LBNL-45991, Lawren
e Berkeley National Laboratory.[46℄ Xiaoye S. Li and James W. Demmel. Making sparse Gaussian elimination s
alable by stati
 pivoting.In Pro
eedings of SC98: High Performan
e Networking and Computing Conferen
e, Orlando, Florida,November 7{13 1998.[47℄ Joseph W.H. Liu. Modi�
ation of the minimum degree algorithm by multiple elimination. ACMTrans. Math. Software, 11:141{153, 1985. 31

[48℄ Joseph W.H. Liu. The role of elimination trees in sparse fa
torization. SIAM J. Matrix Anal. Appl.,11(1):134{172, January 1990.[49℄ H. M. Markowitz. The elimination form of the inverse and its appli
ation to linear programming.Management S
i., 3:255{269, 1957.[50℄ M. Olshowka and A. Neumaier. A new pivoting strategy for Gaussian elimination. Linear Algebraand its Appli
ations, 240:131{151, 1996.[51℄ Padma Raghavan. EÆ
ient parallel sparse triangular solution with sele
tive inversion. Te
hni
alReport CS-95-314, Department of Computer S
ien
e, University of Tennessee, 1995.[52℄ T. N. Res
igno, M. Baerts
hy, W. A. Isaa
s, and C. W. M
Curdy. Collisional breakup in a quantumsystem of three
harged parti
les. S
ien
e, 286:2474{2479, De
ember 24, 1999.[53℄ Jason Riedy. Parallel bipartite mat
hing for sparse matrix
omputation. In preparation.[54℄ Edward Rothberg. Performan
e of panel and blo
k approa
hes to sparse Cholesky fa
torization on theiPSC/860 and Paragon multi
omputers. SIAM J. S
ienti�
 Computing, 17(3):699{713, May 1996.[55℄ Y. Saad and M. H. S
hultz. GMRES: a generalized minimal residual algorithm for solvingnonsymmetri
 linear systems. SIAM J. S
i. Statist. Comput., 7:856{869, 1986.[56℄ Yousef Saad. SPARSKIT: a basi
 tool-kit for sparse matrix
omputations (Version 2).http://www.
s.umn.edu/Resear
h/arpa/SPARSKIT/sparskit.html.[57℄ O. S
henk, K. G�artner, and W. Fi
htner. EÆ
ient sparse LU fa
torization with left{right lookingstrategy on shared memory multipro
essors. BIT, 40(1):158{176, 2000.[58℄ Message Passing Interfa
e (MPI) forum. http://www.mpi-forum.org/.

32

A Exploiting higher pre
ision to enhan
e stabilityUsing higher than working pre
ision is another te
hnique to enhan
e the stability of GESP.Neither of the following two methods were ne
essary to a
hieve stability in the test
aseswe used, but we mention them anyway for
ompleteness, to show that \dynami
 pre
ision"may entirely repla
e dynami
 pivoting as a way to guarantee stability, and in
ase theymay be ne
essary in the future.The �rst and simplest high pre
ision te
hnique is the use of iterative re�nement [25, 18℄where the residual is
omputed to high pre
ision, shown in Figure 14.Figure 14: High Pre
ision Iterative Re�nementCompute an initial approximation x0 of x = A�1b/* using fa
torization of A from GESP */i = 0repeati = i+ 1/*
ompute residual r to high pre
ision, but store in working pre
ision */r = A � x0 � bSolve A � dx = r /* using fa
torization of A from GESP */xi = xi�1 � dxuntil dx is small enoughDepending on the stopping
riterion used to measure whether d is small enough(typi
ally one asks that xi and xi�1 do not di�er mu
h) and assuming that the fa
torizationof GESP is not too unstable for the above iteration to
onverge, it
an be shown thatthis algorithm will
onverge to a quite a

urate approximate solution x̂: kx̂ � A�1bk =O(n")kA�1bk, i.e. independent of the
ondition number. This is the advantage of highpre
ision
omputation of r. We
urrently use iterative re�nement to help stabilize GESP,but sin
e r is only
omputed to working pre
ision, we
an only hope to a
hieve goodba
kward stability, not a tiny forward error bound on kx̂ � A�1bk. (A future version ofour algorithm will in
lude high pre
ision
omputation of r.)But iterative re�nement with or without high pre
ision residuals may not help ifthe initial fa
torization A � LU is too unstable for the iteration to
onverge, i.e.kA � LUk � "kAk. (This was not the
ase for any of our test
ases, although we douse GMRES as the default iterative algorithm to in
rease reliability.) Our se
ond highpre
ision te
hnique shows that stability
an be gauranteed by using dynami
 pre
isioninstead of dynami
 pivoting. This method would be
ompli
ated to implement fully(though
heaply approximated), but shows that pivoting
an in prin
iple be avoidedentirely.We explain the algorithm assuming a left-looking fa
torization. This means that theentries of L and U are
omputed as dot produ
ts, without storing intermediate resultsto memory. This simpli�es the algorithm, be
ause this limits the need for high pre
isionto the registers a

umulating the dot produ
ts, and avoids storing many high pre
isionentries of intermediate S
hur
omplements to memory.33

We des
ribe the well-known error analysis of Gaussian elimination below, butdistinguish the pre
ision "dot;ij used in dot produ
ts to
ompute Uij or Lij from thepre
ision "ij used to store Lij or Uij . Thus we permit ea
h dot produ
t and ea
h Lij andUij to possibly be
omputed and stored to a di�erent pre
ision. (In pra
ti
e one wouldhave just two pre
isions, working and double working.) We use the well-known fa
t thatthe dot produ
t Pki=1 xi � yi
omputed in pre
ision "dot yields the
omputed result (hereand later we ignore over/under
ow and O("2) terms)kXi=1 xi � yi(1 + Æi)where ea
h jÆij � k"dot.Now
onsider the formula Uij = Aij � (i�1Xk=1Lik � Ukj)for i � j. The algorithm will (1) evaluate the dot produ
t to pre
ision "dot;ij (thus it mayvary from one dot produ
t to another in the algorithm), and then (2) subtra
t the resultfrom Aij and store the answer in Uij to pre
ision "ij . This yieldsUij = [Aij � i�1Xk=1Lik �Ukj(1 + Ædot;ijk)℄(1 + Æij)where jÆij j � 2"ij (this
omes from subtra
ting and the �nal rounding of Uij to store inmemory), and jÆdot;ijkj � n"dot;ij . Rearranging, we getAij = Uij(1 + Æij) + i�1Xk=1Lik � Ukj(1 + Ædot;ijk)� Uij(1� Æij) + i�1Xk=1Lik �Ukj(1 + Ædot;ijk) (1)Similarly, the formula Lij = (Aij � j�1Xk=1Lik � Ukj)=Ujjfor i > j is implemented by (1)
omputing the dot produ
t with pre
ision "dot;ij , and then(2) doing the subtra
tion, division and storing of Lij to pre
ision "ij . This yieldsAij � UjjLij(1� Æij) + j�1Xk=1Lik � Ukj(1 + Ædot;ijk) (2)where jÆij j � 3"ij and jÆdot;ijkj � n"dot;ij .To put these formulas all together, we need some notation. We let E be the matrixwith Eij = "ij , Edot be the matrix with Edot;ij = "dot;ij , diag(U) be the diagonal part of thematrix U , and o�(U) be the o�-diagonal part of the matrix U . We also use the Hadamard34

(
omponentwise) produ
t of two matri
es: C = A � B means Cij = Aij � Bij . Then wemay write equations (1) and (2) as A = L �U +E wherejEj � nEdot � (jo�(L)j � jo�(U)j) + 3E � j(o�(L) � diag(U)) + U)j (3)Note that o�(L) � diag(U) is stri
tly lower triangular and U is upper triangular, so theirsum requires no a
tual additions, just
opying. In summary, the nEdot�(jo�(L)j � jo�(U)j)term a

ounts for all the error from inner produ
ts, and the 3E � j(o�(L) � diag(U)) +U)jterm a

ounts for errors from subtra
tion from Aij , division and storing the �nal entriesof L and U in memory.Now we will show how to use this formula to
hoose "dot;ij and "ij dynami
ally toguarantee stability, where we mean guaranteeing that jEijj is no larger than some givenpositive upper bound �Eij . One obvious possibility is �Eij = "kAk, but sin
e it is no harderwe do the general
ase where ea
h �Eij may di�er. We will also insist that all "dot;ij and"ij are no larger than the working pre
ision " in whi
h the entries of A are stored.First, if a pivot Uii is en
ountered that is less than �Eii in magnitude, it should be setto �Eii=3 (to avoid division by zero and minimize growth of the entries of L and U).Se
ond,
onsider the
omputation of Uij . We begin by evaluating the dotprodu
t
 = Pi�1k=1 jLik � Ukj j (any reasonable upper bound on
 will do, su
h asnmax1�k<i jLikjmax1�k<i jUkj j), and then
hoosing "dot;ij � min(�Eij=(3
); "). Next
ompute d = Pi�1k=1 Lik � Ukj and u = Aij � d in pre
ision "dot;ij . Then we
hoose"ij � min(�Eij=(9u); ") and use it to
omplete the
omputation and storage of Uij = Aij�d.These
hoi
es of Eij = "ij and Edot;ij = "dot;ij , along with possibly setting Uii to �Eii=3 asdes
ribed in the last paragraph, guarantee that the i; j entry of the right hand side of (3)is no more than �Eij for i � j as desired.Third,
onsider the
omputation of Lij . As before we begin by
omputing thedot produ
t
 = Pj�1k=1 jLik � Ukj j or a reasonable upper bound and
hoosing "dot;ij �min(�Eij=(2
); "). Next we
ompute d =Pj�1k=1 Lik �Ukj and l = Aij � d in pre
ision "dot;ij .Then we
hoose "ij � min(�Eij=(6l); ") and use it to
omplete the
omputation and storageof Lij = (Aij � d)=Ujj . These
hoi
es of Eij = "ij and Edot;ij = "dot;ij guarantee that thei; j entry of the right hand side of (3) is no more than �Eij for i > j as desired.Finally we get to the solution of Ax = b by the solution of Ly = b for y and Ux = y forx. The simplest thing is to do all the
omputations (in
luding storing intermediate valuesof x and y) in the pre
ision "tri � minij("ij ; "dot;ij). Then the usual error analysis says the
omputed solutions ŷ of Ly = b and x̂ of Ux = y satisfy (L+ÆL)ŷ = b with jÆLj � n"trijLjand (U + ÆU)x̂ = ŷ with jÆU j � n"trijU j. Combining everything yields (A+ F)x̂ = b withjF j = j �E + ÆL � U + L � ÆU + ÆL � ÆU j� j �E + ÆL � U + L � ÆU j� jEj+ jÆLj � jU j+ jLj � jÆU j� jEj+ 2n"trijLj � jU jwhere our
hoi
e of "tri guarantees that the 2n"trijLj � jU j term is dominated by at mostabout n times the jEj term from bound (3). Altogether, this shows that the
omputedsolution x̂ is stable (even after rounding ba
k to working pre
ision) as desired.35

We have obviously paid a pri
e to avoid pivoting, namely extra work to
ompute thebounds b. But we
ould
learly approximate this algorithm, if it ever be
omes ne
essary,to maintain stability while avoiding pivoting.Here is an example. Consider the matrixA = 0BBB� 10�8 1 1 11 4 3 21 2 4 31 2 3 4 1CCCAwhi
h has a
ondition number of under 30. Its L and U fa
tors without pivoting areapproximately (we have omitted important trailing digits)L = 0BBB� 10�8108 1108 1 1108 1 2=3 1 1CCCA and U = 0BBB� 10�8 1 1 1�108 �108 �1083 32 1CCCANote that the �rst
olumn of L and se
ond row of U are very large, but the latter rowsand
olumns are not. Assuming that working pre
ision is " = 10�8 and that we want toa
hieve stability with �Eij = 10�8, then our algorithm would pi
k the following values ofE and Edot (rounded to the nearest power of 10):Edot = 0BBB� 10�8 10�8 10�8 10�810�8 10�16 10�16 10�1610�8 10�16 10�16 10�1610�8 10�16 10�16 10�16 1CCCA and E = 0BBB� 10�8 10�8 10�8 10�810�8 10�16 10�16 10�1610�8 10�16 10�8 10�810�8 10�16 10�8 10�8 1CCCAIn other words, the initial tiny pivot means that all dot produ
ts need to be done todouble pre
ision, but only the se
ond row of U and se
ond
olumn of L need to be storedto double pre
ision; the rest
an be working pre
ision.
36

